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TKE DIRECTIONAL RADIATIVE CHARACTERISTICS 

OF CONICAL CAVITIES AND THEIR RELATION 

by Leslie G. Polgar and John R. Howell 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

Introduction 

The d i rec t iona l  radiat ive properties of surfaces a re  almost always ne- 

glected i n  the  calculation of thermal radiat ive t ransfer .  Yet it ha,s long 

been recognized that few, if  any, r e a l  surfaces follow the  idealized sca t te r -  

ing l a w s  which are almost universally assumed; t h a t  is, e i the r  specular 

(mirrorlike) or  diffuse (cosine l a w )  ref lect ions,  or  some combination of these 

- as proposed i n  R e f .  [11 . 
One surface which r e f l e c t s  i n  an anomalous manner i s  t h a t  of the  moon. 

If the moon's charac te r i s t ics  were those of an idea l  diffuse r e r l ec to r ,  the 

brightness of the  surface should decrease i n  proportion t o  the cosine of the 

angle between the viewer and the normal t o  a point on the  lunar surface. This, 

of course, implies tha t  the moon should appear br ightes t  a t  i t s  center,  and qui te  

dark near the  limb. 

the case. 

Anyone who has viewed t h e  f u l l  moon knows t h a t  t h i s  is  not 

Astronomers have puzzled f o r  many years i n  an e f f o r t  t o  determine the  

s t ructure  of the  moon's surface by comparison of the  r e f l ec t ive  charac te r i s t ics  

Of various substances t o  the lunar character is t ics ,  but without notable success. 

(For example, see Refs. [ 2 t o  71 ) . _- 
~ R a d a r  r e f l ec t ion  s tudies  _ -  of the lunar - surface,  - _-- _I , which began shor t ly  after _ _ _  \- - - 

the  close of World W a r  11, shed some light on the s t ruc ture  of the  moon's face. 

X-52090 
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Daniels [ a ]  for example, s t a t e s  t h a t  "a general picture  of the lunar surface 

deduced from radar data i s  t h a t  of a surface pockmarked by te lescopica l ly  

invis ible  meteor p i t s  having a wide range of s i zes  down t o  a l i m i t  that  has not 

yet been determined. 'I 

Recent closeup photograhs of t he  surface of t he  moon taken by the  Ranger 

lunar probes appear t o  bear out t h i s  view. 

Radar r e f l e c t i v i t y  measurements a re  made a t  such wavelengths tha t  the 

r e s u l t s  may n o t  accurately portray r e s u l t s  which occur i n  the  v i s i b l e  range of 

the spectrum [ 2 ] .  

1 m m  t o  a few cm) on the surface can a f f ec t  t he  sca t t e r ing ,  and seems t o  do s o  

quite strongly. 

shows strong re f lec t ion  i n  the direct ion of incident so l a r  radiat ion.  

I n  the  v i s i b l e  range, much smaller d e t a i l  (on the order of 

Orlova [6]  presents data on the lunar surface r e f l e c t i v i t y  tha t  

Because it i s  known from both ana ly t ica l  and experimental s tudies  (see, 

f o r  example, Refs. [ 9 ]  and [lo]) t h a t  cav i t i e s  of various geometries can r e f l e c t  

strongly i n  the direct ion of incident radiat ion,  an ana ly t ica l  study of t he  

d i rec t iona l  absorptivity charac te r i s t ics  of conical cav i t i e s  was  undertaken. It 

was f e l t  that conical cav i t i e s  would provide a reasonable thermal model of t he  

meteor craters  or other cav i t i e s  t o  be found on the  surface of t h e  moon i n  ad- 

d i t i o n  t o  the academic i n t e r e s t  of such r e s u l t s .  It m i g h t  then be possible t o  

model completely the r e f l e c t i v i t y  charac te r i s t ics  of t he  lunar surface, including 

the dependence on angle of incident solar  radiat ion.  

, 

I n  t h e  present paper, a beam of p a r a l l e l  rad ia t ion  i s  taken as s t r i k i n g  a 

right circular  conical cavi ty  at a given angle of incidence t o  the  cone ax is .  

cone i s  assumed t o  have a d i f fuse ly  r e f l e c t i n g  surface and has a given cone angle, 

A straightforward Monte Carlo analysis  of t h i s  case i s  used t o  determine the 

d i rec t iona l  r e f l e c t i v i t y  of the cone. Parameters varied a re  t h e  cone angle, surface 

The , 
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absorpt ivi ty ,  and angle of incidence of the solar radiat ion.  

made t o  the lunar character is t ics .  

Comparison is  then 

Analysis 

m e  gemetry  malyzed i s  a right circular  zor;ical za-;ity having diffuse,  

gray walls. 

energy i s  impinging on the conical cavity. 

and the  base radius  i s  taken as unity. 

Method of Solution 

Parallel rad ia t ion  assumed t o  consist  of d i scre te  bundles of 

Polarization e f f e c t s  are neglected 

The Monte Carlo method i s  used t o  find the  apparent absorpt ivi ty  and the  

This method angular d i s t r ibu t ion  of ref lected energy from the conical cavity. 

consis ts  of following discrete  bundles of incident energy through t h e i r  probable 

paths i n  the region of the cone, taking into account t he  diffuse re f lec t ions  

within the cone and the absorption of energy bundles at  the  gray in te rna l  sur- 

face. Those bundles not absorbed within the cone are t a l l i e d  i n  the  angular 

increment (AT' 

cone from which they leave (see Fig. 1). 

AS:) on a f i c t i t i o u s  hemisphere that subtends the mouth of the  i' J 

The apparent absorpt ivi ty  of the cone for a given set of parameters - surface 

absorpt ivi ty ,  cone angle, and incident angle of rad ia t ion  - i s  then calculated as 

the f r ac t ion  of the t o t a l  incident bundles absorbed within the  cone. The direc- 

t i o n a l  r e f l e c t i v i t y  p ~ , [ ' , ~ *  

leave the  cone per uni t  so l id  angle. 

i n  a uni t  so l id  angle around (r ' , ( ' )  divided by the  t o t a l  energy incident on 

i s  calculated from the number of bundles that 

This i s  equivalent t o  the  re f lec ted  energy 

the cone. 

The major d i f f i c u l t y  i n  t h i s  type of analysis is  f inding the  optimum geo- 

~nt.ricl.a-1 rt.ln_+_inns h p t ~ p e n  ~:pric);s imdgjnrr;.y t r i s n g l e s  k<+,hjr, +,he :sr,e 5:: crder 

t o  describe the paths of the  bundles i n  terms of the  parameters of the problem. 
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This i s  mainly an  exercise i n  ana ly t i ca l  geometry, but i n  t h i s  case leads t o  

equations f o r  t h e  bundle paths which a r e  transcendental  i n  form. Because the  

Monte Carlo technique depends on many r e p e t i t i v e  calculat ions,  t h i s  could lead 

t o  d i f f i c u l t i e s  f o r  complex problems. A va r i e ty  of methods e x i s t  f o r  circum- 

venting t h i s  p i t f a l l ,  but d i e  t o  t h e  s implici ty  of t he  present problem, t h e  

transcendental equations were solved by a Newton-Raphson technique modified t o  

include third-order terms. 

program ran  rapidly overa l l  it was adequate f o r  t h i s  problem. 

This i s  r e l a t i v e l y  time-consuming, but because the  

A complete derivation of the  equations and a flow chart  f o r  t he  solut ion 

a re  given i n  Ref.[11.]. The amount of computer time required i s  pr imari ly  a 

function of the cone angle, 8, because of t he  increased number of i n t e rna l  re- 

f l ec t ions  fo r  s m a l l  cone angles. For 8 = lo, t he  running t i m e  f o r  one value each 

of absorpt ivi ty  and incident angle and for 50,000 p a r t i c l e  h i s t o r i e s  was about 

nine minutes. The same program, but f o r  8 = 179.8', ran  f o r  3.5 minutes. These 

runs gave t h e  e n t i r e  d i s t r ibu t ion  of d i rec t iona l  r e f l e c t i v i t y  over t he  hemisphere 
. I  

and the  apparent absorptivity.  Generally, running time was less than 5 minutes 

f o r  each set of  parameters and 50,000 p a r t i c l e  h i s to r i e s .  

The s i z e  of the angular increments affected the  number of cases needed t o  

get meaningful results. Various combinations of Ay; and 4 '  were t r i e d  and 

evaluated. 
j 

The "best" combination is ,  of course, a compromise: smaller increments 

yield more values f o r  p lo t t i ng  and show the var ia t ion  of r e f l e c t i v i t y  with angle 

more c lear ly ,  but require  a prohibi t ively high number of p a r t i c l e  h i s t o r i e s  t o  6 

obtain s t a t i s t i c a l l y  meaningful data fo r  each increment. On t h e  other hand, 

choice of larger  increments shortens the computer running t i m e  by reducing the  

number of h i s to r i e s  necessary t o  obtain sound s t a t i s t i c s ;  a t  t h e  same time, r e -  

f l e c t i v i t y  var ia t ions as a function of angle a re  obscured, (see R e f . [ l l ] ) ,  For 
I 
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the  d i rec t iona l  r e f l e c t i v i t y  calculations,  Ay' = 15' and AI' = 6 O  proved a 

s t a i s f ac to ry  compromise. 
3 

Discuss ion of R e s u l t s  

Conical cavi ty  r e s u l t s  
0 

Figure 2(a) shows the  var ia t ion of apparent absorpt ivi ty  of a 60 cone 

f o r  various values of surface absorpt ivi ty  and incident angle. 

shown i n  the  plane normal t o  the cone base and parallel t o  the incident radiat ion.  

A l l  results axe 

Figure 2(b)  shows how the apparent absorpt ivi ty  var ies  as the cone angle is  

changed. A s  the cone angle becomes large,  the r e s u l t s  approach those f o r  a f la t  

plate;  t h a t  is, the  apparent absorpt ivi ty  nears the surface absorptivity.  For 

small cone angles, the  multiple i n t e rna l  ref lect ions cause an increase i n  apparent 

absorpt ivi ty  . 
Figure 3 shows the  e f f ec t  of different  surface absorp t iv i t ies  on the  direc- 

t i o n a l  r e f l e c t i v i t y  of a specif ic  conical cavity. The r e s u l t s  shown are i n  the 

plane containing the  cone axis and the direction of incident radiat ion.  The curves 

a re  not s i m i l a r  i n  the  mathematical sense, because proportionately greater  attenua- 

t i o n  occurs at those angles where the  re f lec ted  rad ia t ion  has undergone multiple 

re f lec t ions .  In  Ref. [9], it i s  shown tha t  the d i rec t iona l  absorpt ivi ty  fo r  

energy incident at  a given angle i s  equal t o  the d i rec t iona l  emissivity at the  

same angle f o r  any isothermal gray cavity. The results of Figs. 3 and 4 can thus 

be used f o r  determining the apparent emissivi t ies  of cones. 

The r e f l e c t i v i t y  i s  demonstrated i n  the four par t s  of Fig. 4. O f  interest 

. here i s  the way i n  which the  radiat ion i s  re f lec ted  strongly i n  the  direct ion of 

the incident radiat ion.  A s  the cone angle i s  increased t h i s  e f f ec t  becomes l e s s  

noticeable, and the r e s u l t s  approach those f o r  a f l a t  Flake. 

I n  Fig. 5, the calculated standard deviation around the Monte Carlo points 



6 

i s  demonstrated f o r  a par t icu lar  case t o  indicate  the accuracy of t he  r e s u l t s .  

A more complete set of r e s u l t s  f o r  conical  c a v i t i e s  i s  given i n  R e f .  [ll]. 

Relation of the r e s u l t s  t o  lunar phenomena 

Because the behavior of the conical c a v i t i e s  studied here corresponds t o  

t h a t  of t he  lunar surface,  t h a t  i s ,  strong re f lec t ions  a r e  present i n  the direc-  

t i o n  of incident radiat ion,  it i s  of i n t e r e s t  t o  compare d i r e c t l y  the  d i rec t iona l  

r e s u l t s  of these two surfaces. 

Bennett [12] follows a similar approach, modeling the r e f l e c t i v e  character is-  

t i c s  of t he  lunar surface by an approximate solut ion of t he  r e f l e c t i v e  character is-  

t i c s  of an idealized swface .  H i s  model consis ts  of a s e r i e s  of spheroidal 

cav i t i e s  with a diffuse plane surface between them. The expression given f o r  t he  

normalized brightness i s  

[ '"" ]- 0.55 COS 5 + 0.45 V 
'normal, 

where 5 i s  the angle of incidence, 5 '  the  angle of r e f l e c t i o n ,  and V i s  the  

f rac t ion  of projected area which i s  illuminated within the spheroidal cavity. The 

two constants (0.55 and 0.45) were evaluated from the  data for t he  lunar surface 

viewed normally and Eq. (1) of course f i t s  t he  data f o r  t h i s  case quite well. 

However, f o r  other viewing angles, t he  function gives a poor f i t ,  and does not 

give maximum r e f l e c t i v i t y  a t  f u l l  moon. 

Figure 6 presents Bennett 's observed and computed r e s u l t s ,  and a favorable 

comparison i s  made with the r e s u l t s  f o r  a conical cavi ty  f o r  cone angle 30' and 

surface absorpt ivi ty  of 0.500. b 

Orlova [4,6] has published experimental measurements of t he  d i rec t iona l  

r e f l e c t i v i t y  o f  the lunar surface. However, she normalized a l l  r e s u l t s  by the 

maximum value a t  zero angle of incidence, thereby allowing only a r e l a t i v e  cmpar- 

ison of t h e  r e s u l t s  f o r  d i f fe ren t  angles of incidence. Orlova's r e s u l t s  f o r  three 

L 
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angles of incidence a re  presented i n  Fig. 7 as  the so l id  l i nes ,  while the dotted 

0 l i n e s  a re  again f o r  a conical cavi ty  of cone angle 30 with a surface absorpt ivi ty  

of 0.5. 

absorp t iv i ty  t o  get opti.mm agreement i f  the lunar sixface needed more accurate 

Comparison could perhaps be made be t t e r  by varying the cone angle and 

thermal modeling. I n  addition, a specular component of r e f l ec t ion  on the 

conical surface might improve the relat ion.  

It needs t o  be made c lear  t h a t  t he  aurthors do not hypothesize a lunar 

surface made up of cav i t i e s  i n  the shape of r igh t  c i rcu lar  cones with diffusely 

r e f l ec t ing  surfaces. Known polar izat ion e f f ec t s  of the moon’s re f lec ted  r a d i -  

a t i on  imply much about the microscopic composition of the surface which sheds 

doubt on a diffuse r e f l ec t ion  model even f o r  the  microstructure [5] and the 

cone angles found t o  correlate  here a re  substant ia l ly  l e s s  than those expected 

of the only near-conical cav i t ies  known t o  ex i s t ;  t h a t  i s ,  meteor craters .  

Halajian [13] discusses the experimental data available i n  r e l a t i o n  t o  the  

lunar surface a t  some length, and concludes t h a t  a highly porous cohesive rock 

f ro th  best  cor re la tes  with a l l  available data on the surface character is t ics .  

The r e s u l t s  herein tend t o  support the photometric evidence backing t h i s  view. 

Conclusions 

The d i r ec t iona l  r e f l e c t i v i t y  of a”right c i rcu lar  cone with 30’ cone angle 

and a surface absorpt ivi ty  of 0.500 compares well with the  experimental photo- 

metric r e s u l t s  f o r  the  lunar surface. 

- -  

From t h i s  it can be inferred t h a t  the lunar surface could have many cav i t i e s  

with s teep walls, whose s t ructure  i s  larger  than the wavelengths of v i s ib l e  l i g h t ,  

but smaller than is  v i s ib l e  t o  present earth-based or lunar-probe observations. 

c r a t e r s  do not correlate  with observed lunar photometric r e s u l t s ,  implying t h a t  
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these c ra t e r s ,  even i f  of considerably smallersize than those observed t o  date,  

contribute l i t t l e  t o  the r e f l e c t i v i t y  charac te r i s t ics  of t he  moon. 

O f  analyt ical  i n t e r e s t ,  it was  found t h a t  t he  Monte Carlo technique worked 

w e l l  i n  t h i s  type of calculation, and i s  a useful  t o o l  f o r  carrying out more 

complex problems of radiat ive interchange. 
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Typical increment 

I viewed from above1 

Fig. 1 Coordinates for energy reflected from conical cavity. 
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Fig 2(aL Apparent absorptivity of conical cavity. 
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Fig. a b )  Apparent absorptivity of right circular cones. 
Cone surface absorptivity, Q 25. 
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Fig. 3 Directional reflectivity of conical cavity. Incident angle, 60'; cone 
angle, 30'. 
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Fig. 5 Directional reflectivity of conical showing expected standard devia- 
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Fig. 6 Comparison of observed and calculated lunar normal- 
ized brightness at @ viRtring angle. 
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Fig. 7 Normalized directional reflectivity of lunar surface (after Orlova Ref. [4]) 
compared to conical cavity results. 
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